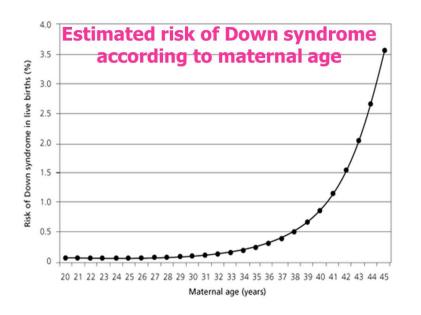
Module 7: Delving deeper

Module 7 will cover:

- A *Priori* risk
- Twins
- The false positive result
 - Mosaicism
 - Maternal chromosomal anomalies
 - Cancer
- The false negative result
 - When can a false negative result occur
 - Case studies

- Ultrasound anomalies
 - Structural anomalies
 - Sex aneuploidy
 - Microdeletions/
 - Microduplications
- Fetal Sex determination



St George's University Hospitals

NHS Foundation Trust

A priori risk (background risk)

This is the starting or background risk for a person having a screening test. Some cell-free DNA tests use the maternal age related risk, at gestation as the 'a priori risk'.

- Most NIPT tests report a result without reflecting the individual's 'patientspecific' chance for any given trisomy (i.e. from quadruple or combined testing).
- The use of the combined or the quadruple test results is a more appropriate approach when reporting on a high chance patient.
- The SAFE test is able to use the first trimester combined test result.

SAFE test incorporates the first trimester combined test result (FTCT)

- The SAFE test has the option to include the use of prior screening tests for risk calculation.
- Prior screening tests include the Combined test and the Quadruple test.
- This gives the most accurate, personalised and comprehensive prenatal screening result for pregnant women.
- If results for a prior screening test is unavailable, the default prior is the maternal age.

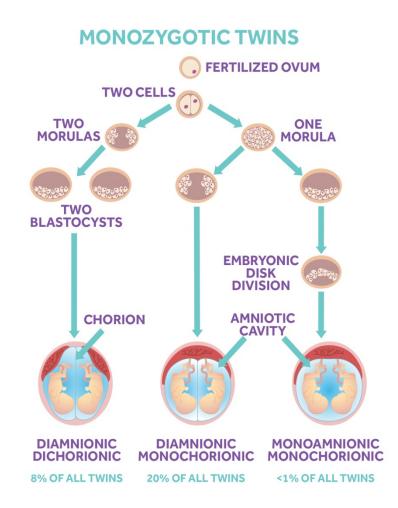
SAFE screening report

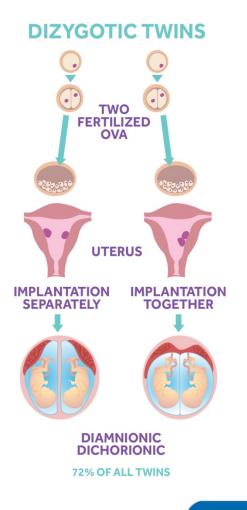
TEST RESULTS:			
TRISOMY	*BACKGROUND RISK (before the SAFE test)	SAFE TEST RISK SCORE	CLINICAL SUMMARY
Trisomy 21	1 in 38 ^{PT}	Greater than 95%	HIGH CHANCE — INVASIVE TEST RECOMMENDED
Trisomy 18	1 in 537 ^{PT}	Less than 1 in 1,000,000 (<0.0001%)	LOW CHANCE
Trisomy 13	1 in 537 ^{PT}	Less than 1 in 1,000,000 (<0.0001%)	LOW CHANCE

the SAFE test is indicated for screening NOT diagnosis - (results should be reviewed and discussed with the healthcare provider)

PT: Prior Test

The sequencing data is automatically coupled with the background chance (prior screening or maternal age) to give an adjusted probability (risk score).




A priori risk case study

- A patient that is 21 years old would have a maternal age-related chance of 1 in 1450.
- When the sample is tested, the cfDNA result may halve the chance, giving a result of 1 in 2900 (low chance).
- If the same patient had the first trimester combined test (FTCT) first, and the result was 1 in 5; the overall result from the cfDNA test would be 1 in 10.
- The patient would remain high-chance and a diagnostic test would be offered.

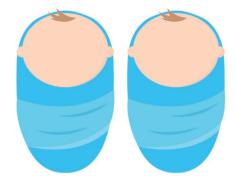
Twin pregnancies

the **SAFE** test St George's Antenatal Fetal Evaluation

NIPT in twins

- Routine screening in twins has a higher false positive rate (~10%), with a lower detection rate than in singleton pregnancies.
- The most up-to-date systematic review of cfDNA screening in twin pregnancies reported – albeit on limited data – a 95% sensitivity and specificity for cfDNA screening in twins (Gil et al. 2017).
- In twin pregnancies, the cfDNA contribution of the two fetuses can vary significantly.
- It is possible that the fetal fraction of the affected fetus is below the threshold required for successful analysis, but there is a high contribution from the unaffected twin.

NIPT in dizygotic twin pregnancies


- There is a greater likelihood for Down's syndrome in most (dizygotic) twin pregnancies.
- Trisomy in dizygotic (non-identical) twins, only usually affects one twin. The contribution of each twins cfDNA into the maternal blood may vary.
- In dichorionic twins, or if the chorionicity is unknown, the SAFE test software assumes they are heterozygous and modifies the fetal fraction requirement accordingly.
- Fetal sex determination is not available for dizygotic twins.

NIPT in monozygotic twin pregnancies

- The SAFE test is suitable for twin pregnancies. However, a high chance trisomy NIPT result in twins cannot determine which twin is affected.
- Performance of cfDNA screening in monozygotic (identical) twins is the same as for singleton pregnancies.

What is a vanishing twin?

- A vanishing twin, is a fetus in a multi-gestation pregnancy which spontaneously dies in the uterus during early pregnancy.
- Vanishing twins occur in up to one out of every eight multi-fetus pregnancies and may not even become known in most cases.

Vanishing twins and NIPT

- Early miscarriages are common when there is a chromosomal anomaly. It has therefore been suggested that vanishing twins may predispose to a high-chance result from a cfDNA screening test.
- There is no data to indicate how long the cfDNA from the demised twin remains in the circulation, but studies have suggested that 8 weeks from demise to testing would be a safe period, but often the date of demise is not known.
- If a vanishing twin is diagnosed, the mother should be advised that cfDNA performance is similar to that in dichorionic twin pregnancy.
- It is important to note on the patient consent form if a vanishing twin is found.

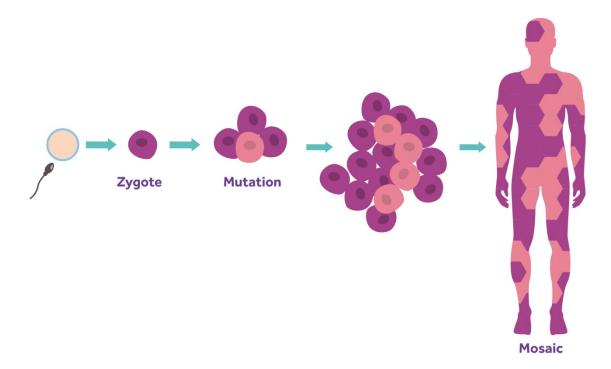
False positive result

Sometimes a cfDNA test result indicates a pregnancy is high chance for a trisomy. But it is then identified, either via an invasive diagnostic test or birth outcome, that the baby is unaffected. This is termed a false positive result.

What can cause a False Positive Result?

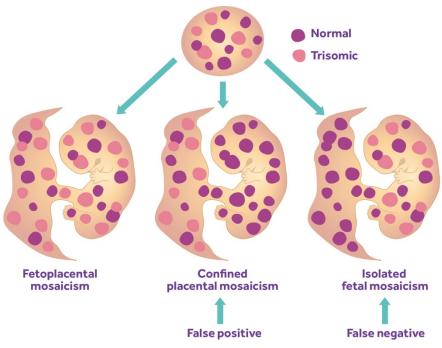
Conditions affecting the placenta:

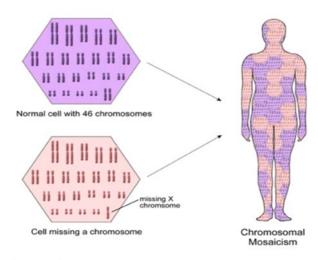
- Vanishing twin
- Placental mosaicism


Conditions affecting the mother:

- Partial duplication of a region of chromosome 21/18/13
- Maternal mosaicism for trisomy 21/18/13
- Cancer

Mosaicism


When the genetic composition of an individual or organ is derived from two or more populations of cells with distinct karyotypes.


Feto-placental mosaicism

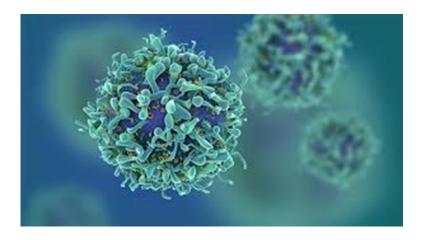
- Circulating cfDNA is from the placenta.
 Mosaicism affecting the placenta can lead to misleading cfDNA results as the placenta and fetus differ.
- Confined placental mosaicism (CPM) can lead to a false positive cfDNA result and diagnostic CVS test result.
- Consideration could be given to an amniocentesis test when positive cfDNA results are seen in a structurally normal fetus with low chance combined or quadruple testing results.
- Isolated fetal mosaicism would always give false negative cfDNA results.

Maternal duplication or mosaicism

- If the patient reports a duplication or mosaicism, or is affected with the full trisomy, it is likely to produce a false positive result due to the excess chromosome material in the plasma.
- If there is a maternal translocation/rearrangement of a chromosome, then there is no contraindication to have the cfDNA test. This is because there is no extra DNA material present to affect the cfDNA assay.

U.S. National Library of Medicine

Balanced Translocation


- Balanced translocation is where a section from one chromosome swaps places with a section from a chromosome of another pair.
- 1 in 560 people have a balanced translocation. Those looking to have children need to be aware of the chance of an 'unbalanced' translocation, which may cause fertility problems, miscarriage, physical abnormalities or learning disabilities.
- NIPT is unable to report unbalanced translocations and thus CVS/amniocentesis is recommended.
- Patients reporting a balanced translocation should be referred for further genetic and/or fetal medicine consultations.

Balanced Translocation

How can cancer affect a result?

- A tumour can shed tumour cfDNA into the maternal circulation.
- Cancer cells have major chromosome abnormalities that can be identified by cfDNA screening as a false positive high chance result.
- Pregnant mothers with cancer are advised against having an NIPT screening test.

False negative results

- A false negative result occurs when a pregnancy is thought to be low-chance for a trisomy following a screening test, but later in pregnancy it is discovered that the baby is affected with a trisomy.
- Amniocentesis is the only testing method that can provide a definitive diagnostic result a patient must be aware of this.
- False negative results can occur due to:
 - use of incorrect a-priori risk
 - twin pregnancy
 - discordant mosaicism between the placenta and fetus (the fetus is affected but the placenta is not)

Fetal Anomalies and NIPT

- An ultrasound is recommended before any NIPT screening
- If a high NT (nuchal translucency) is measured ≥3.5 mm, an NIPT is not recommended.
- The expectant parents should be made aware that the finding of a fetal structural anomaly is an indication for invasive testing with PCR and microarray CGH analysis.
- Fetal structural defects are associated with a higher chance of a nonaneuploid fetal chromosomal abnormality.
- In one study, 225 fetuses had an NT≥3.5 mm. In 24 of these pregnancies, a chromosomal anomaly other than a trisomy was detected.

It is important that women have a clear understanding of the limitations of cfDNA testing with fetal structural anomalies

Sex chromosomal aneuploidy (SCA's)

- Some commercial NIPT's offer sex aneuploidy screening. Studies have reported a lot of variation in the effects of SCA conditions. People affected are still undiagnosed in the general population.
- Sex determination can lead to incidental findings of sex aneuploidy that may have minimal significance and cause no harm or disability to a fetus.
- Until sex aneuploidy screening becomes part of routine clinical practice, this additional testing by cfDNA is not recommended.
- False positive rates for sex aneuploidy screening remain high thereby increasing the need for additional invasive testing.
- The recommendations by most leading institutional bodies (ACOG, RCOG, Nuffield Council on Bioethics and NSC) advise against screening for sex aneuploidy unless there is a clinical indication.

Screening for Microdeletions or Microduplications

- Advances in technology have created opportunities to improve and expand genetic testing.
- There has been a significant commercial interest in implementing these tests into routine clinical care.
- This creates challenges for staff and patients, including misuse, unintended consequences and misunderstanding.
- The SAFE test only screens for Down's, Edwards' and Patau's syndrome.

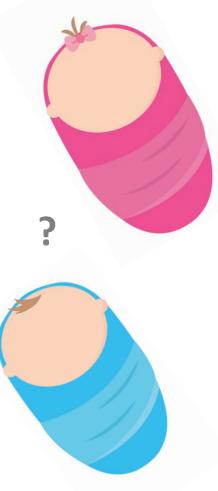
Screening for microdeletions or microduplications

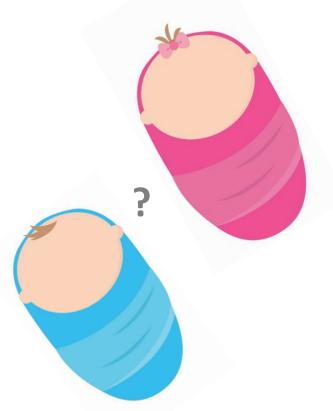
• The SMFM and ACMG both highlight the fact that routine cfDNA screening should not be performed for microdeletions and microduplications.

- Most of the 'normal' population carry multiple small copy number variations. With this in mind, testing for other variations can lead to a high false positive rate with an associated increase in invasive testing.
- The latter goes against the principal of screening in pregnancy, which is to reduce invasive testing rates and parental anxiety.

Fetal sex determination

* not offered through NHS Trusts


- Most couples wishing to find out the sex of the fetus can be informed at the anomaly scan performed between 18-22 weeks.
- The majority of the motivation to find out the sex of the baby is for preparation and curiosity.
- However, it is sometimes important for certain genetic conditions to know the sex of the fetus (sex-linked conditions).


Ethical considerations on fetal sex determination and NIPT

- In March 2017, the Nuffield Council on Bioethics published a report that advises the elimination of sex determination in the private sector.
- It was advised that NIPT should not normally be used to test whether a fetus has a less significant medical condition or impairment; or to find out whether the fetus is a carrier of a gene, nor reveal non-medical traits, including sex.
- Sex determination is not offered by the SAFE test within NHS trusts in line with these recommendations.
- This is not applicable for patients with inherited genetic conditions.

When is sex determination recommended?

- Sex determination is often requested by genetic teams prior to diagnostic testing for sex-linked conditions.
- A sex-linked condition is described as an alteration in one gene on the X chromosome, and causes a condition in males. Examples include Haemophilia and Duchenne muscular dystrophy.
- cfDNA testing can be used to determine the sex of the fetus when medically indicated. This gives patients the opportunity to decide if an invasive test is beneficial.
- These patients will have genetic counselling and support to discuss the options available to them.

